DTU Aqua National Institute of Aquatic Resources

Effects of fisheries discards on the benthic ecosystem

Discards of Danish set nets fisheries in the Kattegat

Esther Savina, Ludvig A. Krag, Rikke P. Frandsen, Niels Madsen

The Danish set (gill- and trammel) nets fleet

- ✓ reducing since the mid-1990s but still of importance (1) (3)
- ✓ likely to gain increasing interest in response to (12) (13)
 - economic issues (rising fuel prices) \checkmark
 - political context (strong support for environmentally friendly practices from consumers and \checkmark environmental organizations)

Challenges

✓ getting more information on interactions between marine environment and commercial set nets fisheries with regard to

Results

	Species		Discard ratio (%) (a)		Individuals	Stations (no.)	Fisheries management		Environmental protections		
	Order	Order Common name (scientific name)		< <u>MLS</u> or Lm (b) > <u>MLS</u> or Lm (b)			Quota (c)	Discard ban (d)	IUCN (e)	OSPAR (f)	N2000 (g)
BENTHIC	Decapoda	Edible crab (Cancer pagurus)	38.79	(54.55)	42	2	X	х	NA	х	x
BEN	Decapoda	Norway lobster (Nephrops norvegicus)	<u>0.94 (0)</u>	0	2	1	٧	٧	LC	x	x
	Carcharhiniformes	Lesser spotted dogfish (Scyliorhinus canicula)	0	0.27 (0.28)	3	3	X	х	LC	x	x
	Gadiformes	Lesser forkbeard (Raniceps raninus)	0.5 (0	0.16)	11	4	X	х	NA	х	x
		Saithe (Pollachius virens)	<u>1.18 (1.62)</u>	<u>3.56 (7.08)</u>	116	14	۷	٧	NA	x	x
		Butterfish (Pholis gunnellus)	0.13	3 (0)	1	1	X	х	NA	х	x
		Dragonets (Callionymus spp.)	0.52	0.04)	2	2	X	x	NA	x	x
	Perciformes	European perch (Perca fluviatilis)	0.45 (0)	0	1	1	X	x	LC	х	x
		Greater weever (Trachinus draco)	1.84	(2.01)	46	10	Х	x	NA	x	x
		Spotted dragonet (Callionymus maculatus)	0.47	0.25)	21	5	Х	X	NA	Х	x
		Brill (Scophthalmus rhombus)	2.26 (3.26)	6.41 (6.96)	397	42	Х	٧	NA	X	x
		Common dab <i>(Limanda limanda)</i>	24.13 (18.91)	3.89 (8.5)	16563	75	Х	٧	NA	x	x
		Common sole (Solea solea)	<u>5.71 (7.7)</u>	<u>1.4 (1.56)</u>	1735	34	٧	٧	NA	х	x
DEMERSAL		European flounder (Platichthys flesus)	1.12 (1.36)	10.15 (13.21)	1875	60	X	٧	LC	х	x
DEME	Pleuronectiformes	Lemon sole (Microstomus kitt)	1.35 (1.42)	0.22 (0)	134	20	X	٧	NA	х	x
		Long rough dab (Hippoglossoides platessoides)	0.83	0.63)	45	12	X	٧	NA	x	х
		Plaice (Pleuronectes platessa)	<u>4.26 (5.11)</u>	<u>3.61 (4.61)</u>	3128	64	٧	٧	LC	х	x
		Topknot (Zeugopterus punctatus)	0.6 (0	D.15)	12	5	Х	X	NA	х	х
		Turbot (Scophthalmus maximus)	3.56 (7.75)	1.02 (0)	482	49	Х	٧	NA	X	x
	Rajiformes	Starry ray (Amblyraja radiata)	9.63 (11.36)	0	416	17	٧	٧	VU	х	х
	Scorpaeniformes	Grey gurnard (Eutrigla gurnardus)	0.59 (0.41)	1.11 (1.15)	126	15	Х	X	NA	х	x
		Pogge (Agonus cataphractus)	1.43 ((1.12)	442	23	Х	x	NA	X	x
		Shorthorn sculpin (Myoxocephalus scorpius)	1.01 (0.92)	1.23 (1)	423	37	Х	X	NA	x	x
		Tub gurnard (Chelidonichthys lucerna)	0.17	' (0)	2	1	Х	x	NA	х	x
	Syngnathiformes	Lesser pipefish (Syngnathus rostellatus)	0	0.26 (0)	2	1	Х	x	NA	x	x
	Synghatinonnes	Snake pipefish (Entelurus aequoreus)	0.13	3 (0)	1	1	Х	x	NA	x	x
	Clupeiformes	Herring (Clupea harengus)	0	<u>0.62 (0.59)</u>	12	3	٧	٧	LC	x	x
	Gadiformes	Cod (Gadus morhua)	<u>3.04 (3.39)</u>	<u>1.79 (1.76)</u>	835	63	٧	٧	VU	V	x
, aic		Pollack (Pollachius pollachius)	0.45	(0.2)	2	2	X	٧	NA	Х	x
DEL		Poor-cod (Trisopterus minutus)	0	0.73 (0.36)	11	6	X	х	LC	Х	x
BENTHOPELAGIC		Whiting (Merlangius merlangus)	<u>1.66 (2.12)</u>	<u>2.09 (3.19)</u>	495	34	۷	٧	NA	Х	x
8		Whiting pout (Trisopterus luscus)	0.91 (0)	0	1	1	X	х	NA	X	x
	Gasterosteiformes	Ten-spined stickleback (Pungitius pungitius)	0	1.64 (1.39)	13	2	X	х	LC	X	x
	Scorpaeniformes	Lumpfish (Cyclopterus lumpus)	5.99 (11.96)		211	18	X	٧	NA	X	x
PELAGIC. NERITIC	Clupeiformes	Allis shad (Alosa alosa)	1.64	(0)	3	1	X	х	LC	V	II, V
	Perciformes -	Atlantic horse mackerel (Trachurus trachurus)	0	<u>0.39 (0)</u>	1	1	X	٧	NA	x	x
		Atlantic mackerel (Scomber scombrus)	0	4.05 (3.78)	11	6	۷	V	LC	х	x
REEF. ASSOCIATED	Perciformes	Corkwing wrasse (Symphodus melops)	0	0.34 (0)	1	1	X	х	LC	х	x
		Cuckoo wrasse <i>(Labrus mixtus)</i>	0	0.91 (0)	1	1	Х	Х	LC	Х	x

DTU

0 0 Intr

- the Ecosystem Approach to Fisheries proposed by the Food and Agriculture Organization
- the European Union Marine Strategy Framework directive
- the revision of the European Union Common Fisheries policy \checkmark

Upcoming progressive implementation of an obligation to land

- \checkmark direct effect on the living resource
- ✓ indirect ecological effects (2)
 - ✓ dead or fatally damaged discarded species available as a food resource for seabed-living invertebrates, or decomposed and recycled to the food web
 - ecological interactions of importance for the surrounding ecosystem, especially in shallow \checkmark waters (Kattegat)

Discard data

- \checkmark observers at sea
- \checkmark in the Kattegat
- ✓ from 1997 to 2012

steps

ext

Figure 1- Map of the study
area with location of hauls.
Each location represents the
midway point of each haul.

Discard ratio

$Discard\ ratio\ (\%) =$	No. of individuals discarded No. of individuals discarded + No. of individuals landed ×100

Ve	essels	Gear	Hauls				
lo.	Length (m)	Туре	Mesh size (mm)	No.	Soaking time (h)	Depth (m)	
17	12.0 (5.3)	Gillnets (53%) and trammel nets (47%)	128.0 (37.3)	103	32.7 (38.9)	11.8 (7.9)	

Table 2- Discard ratio per species and size category, fisheries management regulations and environmental protections for discarded species in the commercial Danish set nets fisheries in the Kattegat from 1997 to 2012.

Remark: Common lobster (Homarus gammarus), tope shark (Galeorhinus galeus), Atlantic wolffish (Anarhichas lupus), monkfish (Lophius piscatorius), ling (Molva molva), thick lipped mullet (Chelon labrosus) and witchflounder (Glyptocephalus cynoglossus) were also caught but with no discard.

(a) Discard ratio is given as a mean with standard deviation in brackets

(b) Minimum Landing Size (MLS) as listed in (5) including updates throughout the years. MLS also corresponds to the Minimum Conservation Reference Size. When there is no MLS, length of maturity (Lm) from (8) and (14) is used, with mean of ranges when applicable. Cells are merged when neither MLS nor Lm is available

- (c) Based on (6): species to be possibly included in the obligation to land $(\sqrt{})$, not on the list (x)
- (d) Based on (7): species under quota in ICES area IIIa ($\sqrt{}$) or not (x)

(e) International Union for Conservation of Nature (IUCN) Red List of threatened species (9): Least Concern (LC), Vulnerable (VU), not evaluated (NA)

(f) OSPAR List of Threatened and/or Declining Species and Habitats (10): species under threat and/or in decline in the OSPAR region of interest (Kattegat) ($\sqrt{}$), not on the list (x)

(g) European Union Habitats Directive (N2000) (4): species of community interest whose conservation requires the designation of special

Catch	Discard	Target species			
No. of individuals per haul	Discard ratio per haul (%)	Cod, lemon sole, lumpfish			
488 (990)	41.40 (27.50)	plaice, sole, turbot			

Table 1- Summary of discard data collected onboard gill- and trammel netters in the Kattegat from 1997 to 2012.

No.: number. Else, the mean is given with standard deviation in brackets.

Ecosystem Approach to Fisheries

✓ Relate results to the research Baltic International Trawl Survey (BITS)

Discarding behaviour

- Explore factors of variability (fishery, depth, soaking time,...)
- Explore discard of invertebrates (sea trials)

areas of conservation (Natura 2000 network) listed in annex II (II), whose taking in the wild and exploitation may be subject to management measures listed in annex V (V), not on the list (x)

References

(1) Andersen, B.S., Ulrich, C., Eigaard, O.R.; and Christensen, A.-S., 2012. Short-term choice behaviour in a mixed fishery: investigating metier selection in the Danish gillnet fishery. ICES Journal of Marine Science 69(1), 131–143.

(2) Bellido, J.M., Santos, M.B., Pennino, G.M., Valeiras, X., Pierce, G.J., 2011. Fishery discards and bycatch: solutions for an ecosystem approach to fisheries management. Hydrobiologia 670, 317-333.

(3) Chuenpagdee, R., Liguori, L., Palomares, M.L.D., Pauly, D., 2006. Bottom-up, global estimates of small-scale marine fisheries catches. Fisheries Centre Research Reports, University of British Columbia, Canada, vol. 14(8), 105 pp.

(4) European Commission, 1992. Council directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Consolidated version of January 1st 2007.

(5) European Commission, 1998. Council regulation (EC) No 850/98 of 30 March 1998 for the conservation of fishery resources through technical measures for the protection of juveniles of marine organisms.

(6) European Commission, 2012. Proposal for a regulation of the European parliament and of the council on certain technical and control measures in the Skagerrak and amending Regulation (EC) No 850/98 and Regulation (EC) No 1342/2008.

(7) European Commission, 2014. Council regulation (EU) No 43/2014 of 20 January 2014 fixing for 2014 the fishing opportunities for certain fish stocks and groups of fish stocks, applicable in Union waters and, to Union vessels, in certain non-Union waters.

(8) Froese, R., and Pauly D., (ed), 2014. FishBase. World Wide Web electronic publication. www.fishbase.org. Version of April 2014.

(9) IUCN, 2013. IUCN Red List of Threatened Species. Version 2013.2. www.iucnredlist.org. Downloaded on 11 June 2014.

(10) OSPAR, 2008. List of Threatened and/or Declining Species and Habitats. Reference Number: 2008-6.

(11) R Core Team, 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.Rproject.org/

(12) Shester G., and Micheli, F., 2011. Conservation challenges for small-scale fisheries: Bycatch and habitat impacts of traps and gillnets. Biological Conservation 144, 1673-1681

(13) Suuronen, P., Chopin, F., Glass, C., Løkkeborg, S., Matsushita, Y., Queirolo, D., Rihan, D., 2012. Review. Low impact and fuel efficient fishing-Looking beyond the horizon. Fisheries Research 119–120, 135–146.

(14) Ungfors, A. 2007. Sexual maturity of the edible crab (Cancer pagurus) in the Skagerrak and the Kattegat, based on reproductive and morphometric characters. - ICES Journal of Marine Science, 64: 318-327.

DTU Aqua National Institute of Aquatic Resources

With the financial support of

ICES SYMPOSIUM

"Effects of fishing on benthic fauna nabitat and ecosystem function' une 16 – 19, 2014 Tromsø, Norway

PhD student +45 35883202 esav@aqua.dtu.dk

